2.Professor Maya was interested in maximizing student learning in all her classes. She decided the best way to do that
...
t way to do that would be to investigate her students’ test performance in a number of ways.
The first thing she did was separate her students’ test scores based on the time of day she held her lectures (morning vs evening). Next she recorded the type of test students were writing (multiple choice vs short answer). She selected a random sample of students from her morning (n = 6) and evening (n = 7) classes (total of 13) and recorded scores from two of their tests as shown below.
Morning
Evening
Multiple Choice
Short Answer
Multiple Choice
Short Answer
66
74
70
45
64
55
80
55
72
77
78
55
70
57
84
60
61
58
64
70
67
69
84
60
70
63
DATA Set 1:
Good morning sunshine. Is Time of Day important?
1. Prof. Maya recently read an article that concluded students retained more information when attending classes in the morning. Based on this finding she thought students in her morning class might have performed differently on their Short Answer test scores when compared to students in her evening class. Does the data support her hypothesis? [15 points]
Multiple Guess! Does Exam Type matter?
2. Prof. Maya also knew that students often did better on multiple-choice tests because they only have to recognize the information (rather than recall it). Given this, she thought students attending the morning class might perform differently on the Multiple-Choice test when compared to the Short Answer test. Does the data support her hypothesis? [15 points]
DATA Set 2:
We’ll try anything once. Does the new Tutorial Plan work?
3. Combining all of her students (and ignoring time of day), Prof. Maya asked her TAs to try a new – and very expensive - tutorial study plan. She then chose a random sample of 20 students to receive the new study plan and another sample of 30 to continue using the old study plan. Following an in-class quiz, she divided the students into 3 levels of achievement (below average, average, and above average), and then created the frequency table below. Does the new expensive tutorial study plan improve student performance? [15 points]
Below average
Average
Above Average
New plan
7
7
6
Old plan
6
15
9
DATA Set 3:
How are YOU doing?
4. Finally, Prof. Maya thinks that her 2018 class is doing better than her 2017 class did. She decided to collect a sample of test scores from the students in her course this year (combining all of the groups) and compare the average with her previous year’s class average. Does the data support her hypothesis? [15 points]
The 2017 class average = 63%
The 2018 sample size = 25
The 2018 sample standard deviation = 11
The 2018 sample average = use your actual midterm mark (yes, you the student reading this :)
Bonus: What does it all mean?
5. Bonus: IF Prof. Maya had complete control of how and when she ran her course in 2018, considering all the info you just found in the 3 data sets, write a brief statement of how you would recommend she set-up the course next year – and explain why. [5 points]
View More
3.Professor Maya was interested in maximizing student learning in all her classes. She decided the best way to do that
...
t way to do that would be to investigate her students’ test performance in a number of ways.
The first thing she did was separate her students’ test scores based on the time of day she held her lectures (morning vs evening). Next she recorded the type of test students were writing (multiple choice vs short answer). She selected a random sample of students from her morning (n = 6) and evening (n = 7) classes (total of 13) and recorded scores from two of their tests as shown below.
DATA Set 1:
Good morning sunshine. Is Time of Day important?
1. Prof. Maya recently read an article that concluded students retained more information when attending classes in the morning. Based on this finding she thought students in her morning class might have performed differently on their Short Answer test scores when compared to students in her evening class. Does the data support her hypothesis? [15 points]
Multiple Guess! Does Exam Type matter?
2. Prof. Maya also knew that students often did better on multiple-choice tests because they only have to recognize the information (rather than recall it). Given this, she thought students attending the morning class might perform differently on the Multiple-Choice test when compared to the Short Answer test. Does the data support her hypothesis? [15 points]
DATA Set 2:
We’ll try anything once. Does the new Tutorial Plan work?
3. Combining all of her students (and ignoring time of day), Prof. Maya asked her TAs to try a new – and very expensive - tutorial study plan. She then chose a random sample of 20 students to receive the new study plan and another sample of 30 to continue using the old study plan. Following an in-class quiz, she divided the students into 3 levels of achievement (below average, average, and above average), and then created the frequency table below. Does the new expensive tutorial study plan improve student performance? [15 points]
Below average
Average
Above Average
New plan
7
7
6
Old plan
6
15
9
DATA Set 3:
How are YOU doing?
4. Finally, Prof. Maya thinks that her 2018 class is doing better than her 2017 class did. She decided to collect a sample of test scores from the students in her course this year (combining all of the groups) and compare the average with her previous year’s class average. Does the data support her hypothesis? [15 points]
The 2017 class average = 63%
The 2018 sample size = 25
The 2018 sample standard deviation = 11
The 2018 sample average = use your actual midterm mark (yes, you the student reading this :)
Bonus: What does it all mean?
5. Bonus: IF Prof. Maya had complete control of how and when she ran her course in 2018, considering all the info you just found in the 3 data sets, write a brief statement of how you would recommend she set-up the course next year – and explain why. [5 points]
View More
4. When to balance dice are rolled, there are 36 possible outcomes. Find the probability that the sum is
...
is a multiple of three or greater than eight.
A certain game consist of rolling a single fair die and pays off as follows nine dollars for a six, six dollars for a five, one dollar for four and no payoffs otherwise.Find the expected winnings for this game.
A fair die is rolled four times. A 6 is considered success While all other outcomes are failures find the probability of three successes.
A pet store has nine puppies including 4 poodles 3 terriers and 2 retrievers. If Rebecca an errand in that order each select one puppy at random without replacement find the probability that Aaron select a retriever given that from last Rebecca selects a poodle.
Experience shows that a ski lodge will be for (166 guests) if there is a heavy snowfall in December, well only partially full (52 guests) With a light snowfall. What is the expected number of guests if the probability for a heavy snowfall is 0.40? I assume that heavy snowfall and light snowfall are the only two possibilities.
A pet store has six puppies Including two poodles two Terriers and to retrievers. If Rebecca and Aaron in that order each select one puppy random with replacement (They both may select the same one) Find the probability That Rebecca selects a terrier and Aaron selects a retriever.
Three married couples arrange themselves randomly in six consecutive seats in a row. Determine (A) the number of ways the following event can occur, And (B) the probability of the event. (The denominator of the probability fraction will be 6!=720, The total number of ways to arrange six items ). Each man was that immediately to the right of his wife.
A coin is tossed five times. Find the probability that all our heads. Find the probability that at least three are heads.
A certain prescription drug is known to produce undesirable facts and 35% of all patients due to drug. Among a random sample of a patient using a drug find the probability of the stated event. Exactly 5 have undesired effects.
10,000 raffle tickets are sold. One first prize of 1600, for second prizes of 800 each, And 9/3 prizes of 300 each or to be awarded with all winners selected randomly. If you purchase one ticket what are your expected winnings.
Suppose a charitable organization decides to Raise money by raffling A trip worth 500. If 3000 tickets are sold at one dollar each find the expected net winnings for a person who buys one ticket. Round to the nearest cent
Three men and seven women are waiting to be interviewed for jobs. If they are selected in random order find the probability that all men will be interviewed first
A fair diet is rolled. What is the probability of rolling on our number or a number less than three.
The pet store has 15 puppies, including five poodles, five Terriers, and five retrievers. If Rebecca and Aaron, in that order, select one puppy at random without replacement, find the probability that both select a poodle
Beth is taking a nine question multiple-choice test for which each question Has three answer choices, only one of which is correct. Beth decides on answering By rolling a fair die And making the first answer choice if the die shows one or two, The second If the die shows three or four, and the third if the die shows five or six. Find the probability of the stated event. Exactly 6 correct answers
For the experiment of drawing a single card from a standard 52 card deck find (a) the probability and (b) the odds are in favor that they do not drive six
View More