Search find-a-formula-for-the-sum-of-the-series-n-n-xn-n

# Find a formula for the sum of the series n n xn n

## Top Questions

- 1); I{x>1}, theta > 1. (a) Show that log Xi has an exponential distribution with a mean of 1/theta. (b) Find the form for a UMP test of H_0: theta <= theta_0 vs. H_a : theta > theta_0. (c) Give formula for nding the rejection region for a given value of alpha. Hint: use the result from (a) to fi nd the distribution of the test statistic. (d) Conduct the test in (b) with alpha = 0.05 and theta_0 = 1:5 using the dataset: {1.2, 2.4, 1.3, 1.7, 1.9}. (e) Find the form of a UMPU test for testing H_0 : theta = theta_0 vs. H_a : theta_0 != theta_0. (f) Use the data in (d) to conduct the test in (e) with alpha = 0.05 and theta_0 = 1.5.
View More

- 1); I{x>1}, theta > 1. (a) Show that log Xi has an exponential distribution with a mean of 1/theta. (b) Find the form for a UMP test of H_0: theta <= theta_0 vs. H_a : theta > theta_0. (c) Give formula for nding the rejection region for a given value of alpha. Hint: use the result from (a) to fi nd the distribution of the test statistic. (d) Conduct the test in (b) with alpha = 0.05 and theta_0 = 1:5 using the dataset: {1.2, 2.4, 1.3, 1.7, 1.9}. (e) Find the form of a UMPU test for testing H_0 : theta = theta_0 vs. H_a : theta_0 != theta_0. (f) Use the data in (d) to conduct the test in (e) with alpha = 0.05 and theta_0 = 1.5.
View More

- 1); I{x>1}, theta > 1. (a) Show that log Xi has an exponential distribution with a mean of 1/theta. (b) Find the form for a UMP test of H_0: theta <= theta_0 vs. H_a : theta > theta_0. (c) Give formula for nding the rejection region for a given value of alpha. Hint: use the result from (a) to fi nd the distribution of the test statistic. (d) Conduct the test in (b) with alpha = 0.05 and theta_0 = 1:5 using the dataset: {1.2, 2.4, 1.3, 1.7, 1.9}. (e) Find the form of a UMPU test for testing H_0 : theta = theta_0 vs. H_a : theta_0 != theta_0. (f) Use the data in (d) to conduct the test in (e) with alpha = 0.05 and theta_0 = 1.5.
View More

task is to move all the reds from the left to the right and all the blacks from the right to the left. The middlebox is empty to allow moves. The moves follow strict rules. Rule # 1: the reds can only move to the right and the blacks can only move to the left. No backward moves are allowed Rule # 2: Equally applicable to the black and the reds, each dot can only move one step forward in the box in front of it is empty, and can skip the contiguous box is occupied by a different colored dot to the following box if empty. While moving your pieces, carefully record all the moves you made. Start first with the 5-boxes set, then the 7-boxes set Try the same rules for a 9-boxes set and then for an 11-boxes set. Record all your moves on paper Examine all four cases and find a pattern that relates the number of moves to the number of dots. Explain how you arrived at this conclusion Create a general formula that will give the number of moves based on the number of dots regardless of how many dots you have.
View More

formula online to help.. It should be a simple straightforward problem but i just can not for the life of me figure it out. are you able to provide me with a formula or point me in the right direction? The problem is: Solution A has a 50% concentration Solution B has a 100% concentration Solution C has a 5% concentration you have 5L of each solution to utilize as well as unlimited quantities of water to dilute solution concentrations if needed. Part A Make a final solution of 100ml with solution concentrations of Solution A 15%, solution C 5% and solution C 80%. how much of each solution will you need to make your final 100ml solution? Part B using the above solutions how many 100ml final solutions can you produce with the 5L volumes? No matter how I work it i can't make the solution to the correct concentrations. Thank you for your help. John
View More

formula online to help.. It should be a simple straightforward problem but i just can not for the life of me figure it out. are you able to provide me with a formula or point me in the right direction? The problem is: Solution A has a 50% concentration Solution B has a 100% concentration Solution C has a 5% concentration you have 5L of each solution to utilize as well as unlimited quantities of water to dilute solution concentrations if needed. Part A Make a final solution of 100ml with solution concentrations of Solution A 15%, solution C 5% and solution C 80%. how much of each solution will you need to make your final 100ml solution? Part B using the above solutions how many 100ml final solutions can you produce with the 5L volumes? No matter how I work it i can't make the solution to the correct concentrations. Thank you for your help. John
View More

terms of f(x-1). For example, x f(x) 1 1 2 3 3 5 4 7 To find the pattern f(x)=1=1+0 = 1.1 + 2.0 f(x)=3=1+0+2 = 1.1 + 2.1 f(x)=5=1+0+2+2 = 1.1 + 2.2 f(x)=7=1+0+2+2+2 = 1.1 + 2.3 so the formula becomes 1+2(x-1). e.g. x=4, f(x)= 1+2(4-1)=7.
View More

1.AU MAT 120 Systems of Linear Equations and Inequalities Discussion

mathematicsalgebra Physics