Bessel Function homework Help at TutorEye

Best Homework Help For Bessel Function

Our experts are available 24/7 to help you with Bessel Function homework problems!

Top Questions

Bessel Function

Bessel functions are mathematical functions. It was defined by Daniel Bernoulli. Later it was generalized by Friedrich Bessel. It is a cylinder function defined in 1817.

 

Bessel Function Sample Questions:

Question 1: Let J0(.) and J1(.) be the Bessel function of the first order kind of order zero and one respectively. If L[J0(t)] =  Bessel function of the first order kind of order zero then L[J1 (t)]= _____


(a) option a

(b) option b

(c) option c

(d) option d


Answer: (c)

Explanation: L[J0(t)] =  explanation 1

 

Get the full solution!

 

Question 2: If Jn(x) and Yn(x) denote Bessel functions of order n of the first and second kind, then general l solution of the DE then general l solution of the DE is given by


(a) y(x) = αx J1(x) +βxy1(x)

(b) y(x) = α J1(x) +βy1(x)

(c) y(x) = α J0(x) +βy0(x) 

(d) y(x) = αx J0(x) +βxy0(x)


Answer: (a)

Explanation: xy’’ + ay’ + k2xy = 0;

Get the full solution!

 

Question 3: The value of The value of is


(a) option 1

(b) option 2

(c) option 3

(d) 0


Answer: (c)

Explanation: For a>0 For a>0

 

Get the full solution!


 

Question 4: It is known that Bessel’s function Jn(x), n>0 Bessel’s function Jn(x)  = J0(x) +   n>0for all t>0, x∈R, then the value of J0(x)is equal to ___when x = find the value of

 

(a) 1

(b) question 3 option a

(c) question 3 option b

(d) question 3 option c


Answer: -2

Explanation: Bessel function of trigonometric function 2Bessel function of trigonometric function = sin x 

 

Get the full solution!


 

Question 5: Trigonometric expansion of sin x involving Bessel function is

 

(a) 2[J1  - J3 + J5….]

(b) J0 - 2J4 +2J6 - 2J8

(c) J1 - 2J3 +2J5 - 2J7

(d) ) 2[J0 - J4 +J6 - J8]


Answer: (a)

Explanation: The trigonometric expansion of sin x

 

Get the full solution!


 

Question 6:  It is known that Bessel’s function Jn(x), n>0 known that Bessel’s function Jn(x), n>0 =  J0(x) + J(x) for all z>0 and x∈ R, then the value of
then the value of is equal to

 

(a) Question 6 optio a

(b) 1

(c) 0

(d) Question 6 optio d


Answer: (d)

Explanation: Bessel function of trigonometric function J0(x) +Bessel function of trigonometric function J(x)= cos(x)

 

Get the full solution!


 

Question 7: The general solution of the DE xy’’ -3y’ +xy =0 is


(a) x2[C1J1(x) + C2J-1(x)]

(b) x2[C1J2(x) + C2Y2(x)]

(c)  x[C1J2(x) + C2Y2(x)]

(d) x2[C1J2(x) + C2J-2(x)]


Answer: (b)

Explanation: xy’’ + ay’ + k2yx = 0 

Get the full solution!


 

Question 8: The general solution of the DE y’’ -The general solutiony’ + 4(x2- find)y = 0 is

 

(a) x3/2[C1J5/4(x) + C2J-5/4(x)]

(b) x3/2[C1J5/4(x2) + C2J-5/4(x2)]

(c) x3/2[C1J5/4(x2) + C2Y5/4(x2)]

(d) x3/2[C1J5/4(x) + C2Y5/4(x2)]


Answer: (b)

Explanation: y’’ -multiplying the equation by x2y’ + 4(x2- multiplying the equation)y = 0 on multiplying the equation by x2

 

Get the full solution!


 

Question 9: dx is equal to dx is equal to

 

(a) xJ0(x) - x3J1(x)

(b) x2J0(x)+ J1(x)

(c) x3J1(x)- 2x2J2(x)

(d) None

 

Answer: (c)

Explanation: solution of question 9

 

Get the full solution!


 

Question 10: The general solution to the DE  x2y’’+ xy’+(4x2- The general solution to the DE )y = 0 in terms of Bessel’s functions JV(x) is

 

(a) y(x) = C1J3/5(2x) + C2J-3/5(2x)

(b) y(x) = C1J3/5(2x) + C2J-3/5(2x)

(c) y(x) = C1J3/5(x) + C2J-3/5(x)

(d) y(x) = C1J3/10(2x) + C2J3/10(2x)


Answer: (a)

Explanation: x2y’’+ xy’+(4x2-  )y = 0
 

Take Bessel Function Homework Help Today!

 

Math Questions Answers Pages

Multivariable Calculus Definite Integrals