units.
Chemical Equation: Write a generic chemical equation for the dehydration of cobalt (II) chloride ∙ x hydrate (include the state symbols of the reactant and two products). [T2]
Mass of Reactants and Products:
a) Calculate the initial mass of the hydrated cobalt (II) chloride. [T1]
b) Calculate the final mass of the anhydrous cobalt (II) chloride remaining in the cruiio8icible. [T1]
c) Calculate the mass of water given off by the sample of hydrated cobalt (II) chloride. [T1]
Moles of Products:
a) Calculate the moles of anhydrous cobalt (II) chloride remaining in the crucible. [T1]
b) Calculate the moles of water released from the hydrate. {T1]
4. Mole Ratio
a) Create an experimental mole ratio between the b) and a). [T1]
5. Formula of Hydrate: State the chemical formula you have determined for this hydrate.
Round the formula to the closest whole number value for x. [T1]
Discussion/Conclusion Questions: [T6]
Based on the chemical formula of the hydrate, calculate the percentage composition (percent by mass) of the hydrated cobalt (II) chloride. Remember to determine the percentage of each element (Co, Cl, H, and O). [T2]
A possible source of systematic error in this experiment is insufficient heating. Suppose that the hydrate was not completely converted to the anhydrous form. Describe how this would affect: the calculated percent by mass of water and the experimental molecular formula (i.e. would x be higher, lower or the same).
Suppose a student spilled some of the hydrated cobalt (II) chloride. Describe how this would affect the calculated percent by mass of water (would it be higher, lower or the same) and the experimental chemical formula of the hydrate. [T2]