Search solve-the-questions-in-the-file

# Solve the questions in the file

## Top Questions

ution, regression, decision trees Past paper has 5 questions (attached), we will have 4. Complexity of questions will be reduced slightly for decision trees and regression. Visualisation question – written in word file or hand-written and scanned or photographed. Normal distribution: Sketch using online normal distribution visualisation applet (add notes around this to discuss if necessary) or sketch by hand and scan or photograph. For mathematical workings, use formulae sheet, copy, paste and adapt, or scan / photograph your workings and upload. Decision tree – use Office smart shapes, or sketch by hand and scan or photograph. If formulae are required, then use formula sheet, copy, paste and adapt. Regression – written in word file or hand-written and scanned or photographed. MCDA – written in word file or hand-written and scanned or photographed. Remember if they appear, decision trees and regression will be a little less technical than they have been in the past. (To allow more of a buffer with regards to time available to complete and upload). Visualisation and MCDA questions will be more general (strengths and weaknesses, key messages, make some recommendations). Exam questions will be set so as to minimise practical and logistical difficulties in uploading answers.
View More

Use your result in (a) to solve the system: ■(x&+2y&+z&=1@x&y&+2z&=2@x&+y&+2z&=3) Question#2 (5) (modified from #13 p. 102 in your book) Solve the matrix equation for X X[■(1&1&1@1&2&0)]=[■(1&1&1@3&4&2)] Question#3 (5) (modified from #9 p. 102 in your book) Let [■(a&0&b&2@0&a&3&6@0&a&b&c+2)] be the augmented matrix of a linear system. Find for what values of a,b,c the system has: (i) a unique solution (ii) a one-parameter solution (iii) a two-parameter solution iv) no solution Question#4 (7) Write the matrix A=[■(-1&1&-1@1&1&-1@1&-1&2)] as a product of elementary matrices Question#5 (3) Find the determinant by any method: |■(0&-1&0&0&1@1&1&1&3&1@1&2&3&1&2@1&-1&0&3&1@1&-1&1&0&1)| Question#6 (3-2)Given thissystem: ■(x_1&+2x_2&+x_3&=1@x_1&-〖3x〗_2&+0x_3&=2@x_1&+0x_2&+2x_3&=3) a) Use Cramer’s method to solve for x_1 only b) Solve for the other variables by any method.
View More

it will be assigned to me at 1pm on 4/10/20 (this Friday) and it will be due by 2pm. So I will need someone helping me from 1-2pm so I can complete it on time. To be quite frank I will need someone to just solve the questions for me so I can turn it in on time. I would like more sessions in the future to actually help me work through it. But for this test I need to just see the how the problem is work out. I have attached some files of example questions of what you can expect. But again, these are NOT the questions I need solved. I will not have those questions until the day of the test. So I need someone who can complete problems of this caliber quickly. Thank you.
View More

3+12 and that is solve by factoring step by step. For all quadratics, final answers should be entered in set notation. If a quadratic has no solution write no solution. The 2nd question is find all solutions that satisfy the domain. Clearly Indicate any extraneous solutions
View More

chapter in total, I need someone to solve the problems for me and deliver them within 12 hours. If anyone interested let me know your price and your delivery time thank you in advance.
View More

hanging and finding the distance based on it. So in a way it all deals with motion along a straight plane.
View More

1.AU MAT 120 Systems of Linear Equations and Inequalities Discussion

mathematicsalgebra Physics