Search suppose-the-number-of-races-that-a-typical-horse-will-run-in-one-calendar-year-is-normally-distributed-with-a

# Suppose the number of races that a typical horse will run in one calendar year is normally distributed with a

## Top Questions

esent the cost would be y=46+0.25x , where x is the number of miles traveled. a. What is your cost if you travel 59 mi? The cost is $43.26 . b. If your cost was$66.25 , how many miles were you charged for traveling? You were charged for traveling 66.51 miles. c. Suppose you have a maximum of $100 to spend for the car rental. What would be the maximum number of miles you could travel? The maximum number of miles you could travel is Number View More xt 4 tests are performed, find P(x=0), P(x=1), P(x=2),P(x=3) and P(x=4). SHOW ALL WORK TO GET CREDIT) 4) Use the confidence interval (99%) to solve the following question. A company is trying to establish the number of average amount of funds that are owed by its employees. They collect 1,000 accounts and found the sample average owed is$250 with a standard deviation of 10. Calculate the confidence interval (MUST SHOW ALL WORK TO GET CREDIT) 5) Use the t distribution formula and table to solve the following question. A random sample of 91 with a sample average of 90 and a standard deviation of 4.2 hours, calculate the confidence interval at 98% (MUST SHOW ALL WORK TO GET CREDIT) 6) A poll of 3,000 adults out of 5,500 was collected to found that they did not get a master’s degree. Calculate the confidence interval at 95%. (MUST SHOW ALL WORK TO GET CREDIT)
View More

hour. Let N(t) be the number of custoer arrivals up to time t, with hour as the unit. There are two types of soft drinks, type A and B, stored in the machine. Suppose that each time a customer deposits money, the machine dispenses one soft drink A with probability p1, or one soft drink B with probability p2. We have p1 + p2 = 1, p1 > 0, p2 > 0. Let X(t) be the number of type A soft drinks dispensed up to time t; and Y (t) be the number of type B soft drinks dispensed up to time t.
View More

y aces or twos, you lose the game immediately. You also lose if you draw picture cards(J,Q,K) more than twice. In this question, you’ll study the probability of winning this game.(a) What is the probability of drawing no aces or twos after thirteen draws?(b) Given you have drawn thirteen times, none of which is aces or twos, what is the probability that you draw at most two picture cards?(c) What is the probability to win this game? 12. Suppose you are tossing an unbiased coin for100times.(a) What is the probability of getting50heads and50tails?(b) LetXbe the random variable counting the number of heads you observe in this exper-iment. What is the expected value ofX? What is the variance ofX? What is thestandard deviation ofX? 13. The following are probability distributions for two random variablesX,Y. kPr(X=k) 0,0.4 1,0.3 2,0.3 kPr(Y=k) 0,0.5 1,0.3 2,0.2 (a) Construct the probability distribution table for the random variableXY.(b) Find E[X],E[Y] and E[XY]. Is is true that E[XY] =E[X]E[Y]?(c) Find the variances σ2X,σ2Y,σ2XY of X,Y and XY. Is it true that σ2XY=σ2Xσ2Y? 14. The aliens who are fond of gambling came back to play another game with you. In this game, you first toss a coin5times. If you observe3or fewer tails, you roll a die3times. If youobserve4or more tails, you roll a die20times. What is the probability that you end up with at most two6’s in your dice rolls? 15. (Challenge question, worth2points) You have two bags, each of which contains10marbles.Each time you remove a marble from a random bag. What is the probability that after one of the bags is emptied, there are still exactly3marbles in the other bag?
View More

rt once a week, and 50% of the time he doesn't attend a concert at all in a given week. What is the expected value for the number of times Danny attends a concert during a week?
View More

2,3,4,7). If it lands tails, a fair six-sided die is thrown (with values 3,4,5,6,7,9). Regardless of which die is used, Alice eats n grains of rice, where n is the largest prime factor of the die result (for example, the largest prime factor of 9 is 3). (a) What is the conditional probability that the coin lands heads, given that Alice eats three grains of rice? (b) Suppose that the entire experiment is conducted twice on the following day (starting with a new coin toss on the second run-through). What is the conditional probability that the coin lands heads on both run-throughs, given that Alice eats a total of five grains of rice during the two run-throughs? (Do not count the two grains from part (a) in part (b); we assume two brand new experiments, each with a new coin toss. Start your solution by defining a suitable partition of the sample space. Please use an appropriate notation and/or justification in words, for each value that you give as part of your solution.) Exercise 5) Alice and Bob throw an unfair coin repeatedly, with probability 2/5 of landing heads. Alice starts with £2 and Bob starts with £3 . Each time the unfair coin lands heads, Alice gives Bob £1 . Each time the unfair coin lands tails, Bob gives Alice £1 . The game ends when one player has £5 . (a) Draw a labelled Markov chain describing the problem, and write down a transition matrix P. Write down the communication classes, and classify them as either recurrent or transient. (b) Using the transition matrix, calculate the probability that Alice loses all of her money in exactly four tosses of the unfair coin. (c) Calculate the (total) probability that Alice loses all of her money (before Bob loses all of his). (d) Calculate the expected (mean) number of tosses of the unfair coin, for the game to end.
View More

units. Chemical Equation: Write a generic chemical equation for the dehydration of cobalt (II) chloride ∙ x hydrate (include the state symbols of the reactant and two products). [T2] Mass of Reactants and Products: a) Calculate the initial mass of the hydrated cobalt (II) chloride. [T1] b) Calculate the final mass of the anhydrous cobalt (II) chloride remaining in the cruiio8icible. [T1] c) Calculate the mass of water given off by the sample of hydrated cobalt (II) chloride. [T1] Moles of Products: a) Calculate the moles of anhydrous cobalt (II) chloride remaining in the crucible. [T1] b) Calculate the moles of water released from the hydrate. {T1] 4. Mole Ratio a) Create an experimental mole ratio between the b) and a). [T1] 5. Formula of Hydrate: State the chemical formula you have determined for this hydrate. Round the formula to the closest whole number value for x. [T1] Discussion/Conclusion Questions: [T6] Based on the chemical formula of the hydrate, calculate the percentage composition (percent by mass) of the hydrated cobalt (II) chloride. Remember to determine the percentage of each element (Co, Cl, H, and O). [T2] A possible source of systematic error in this experiment is insufficient heating. Suppose that the hydrate was not completely converted to the anhydrous form. Describe how this would affect: the calculated percent by mass of water and the experimental molecular formula (i.e. would x be higher, lower or the same). Suppose a student spilled some of the hydrated cobalt (II) chloride. Describe how this would affect the calculated percent by mass of water (would it be higher, lower or the same) and the experimental chemical formula of the hydrate. [T2]
View More

of CoCl2 . H2O. The hydrate became anhydrous through this. Suppose a student spilled some of the hydrated cobalt (II) chloride. Describe how this would affect the calculated percent by mass of water (would it be higher, lower or the same) and the experimental chemical formula of the hydrate. [T2] A possible source of systematic error in this experiment is insufficient heating. Suppose that the hydrate was not completely converted to the anhydrous form. Describe how this would affect: the calculated percent by mass of water and the experimental molecular formula (i.e. would x be higher, lower or the same).
View More

1.AU MAT 120 Systems of Linear Equations and Inequalities Discussion

mathematicsalgebra Physics