, a standard deviation of $1 would be considered large if it is describing the variability from store to store in the price of an ice cube tray. On the other hand, a standard deviation of $1 would be considered small if it is describing store-to-store variability in the price of a particular brand of freezer. A quantity designed to give a relative measure of variability is the coefficient of variation. Denoted by CV, the coefficient of variation expresses the standard deviation as a percentage of the mean. It is defined by the formula CV = 100(s/ x ). Consider two samples. Sample 1 gives the actual weight (in ounces) of the contents of cans of pet food labeled as having a net weight of 8 oz. Sample 2 gives the actual weight (in pounds) of the contents of bags of dry pet food labeled as having a net weight of 50 lb. There are weights for the two samples.
Sample 1 7.7 6.8 6.5 7.2 6.5
7.7 7.3 6.6 6.6 6.1
Sample 2 50.7 50.9 50.5 50.3 51.5
47 50.4 50.3 48.7 48.2
(a) For each of the given samples, calculate the mean and the standard deviation. (Round all intermediate calculations and answers to five decimal places.)
For sample 1
Mean
Standard deviation
For sample 2
Mean
Standard deviation
(b) Compute the coefficient of variation for each sample. (Round all answers to two decimal places.)
CV1
CV2
ng the snow. The first child exerts a force of F1 = 11 N at an angle θ1 = 45° counterclockwise from the positive x direction. The second child exerts a force of F2 = 6 N at an angle θ2 = 30° clockwise from the positive x direction.
Find the magnitude (in N) and direction of the friction force acting on the sled if it moves with constant velocity.
magnitude
direction (counterclockwise from the +x-axis)
What is the coefficient of kinetic friction between the sled and the ground?
What is the magnitude of the acceleration (in m/s2) of the sled if F1 is doubled and F2 is halved in magnitude?