Search the-second-part-of-the-assignment-for-statistics

# The second part of the assignment for statistics

## Top Questions

2,3,4,7). If it lands tails, a fair six-sided die is thrown (with values 3,4,5,6,7,9). Regardless of which die is used, Alice eats n grains of rice, where n is the largest prime factor of the die result (for example, the largest prime factor of 9 is 3). (a) What is the conditional probability that the coin lands heads, given that Alice eats three grains of rice? (b) Suppose that the entire experiment is conducted twice on the following day (starting with a new coin toss on the second run-through). What is the conditional probability that the coin lands heads on both run-throughs, given that Alice eats a total of five grains of rice during the two run-throughs? (Do not count the two grains from part (a) in part (b); we assume two brand new experiments, each with a new coin toss. Start your solution by defining a suitable partition of the sample space. Please use an appropriate notation and/or justification in words, for each value that you give as part of your solution.) Exercise 5) Alice and Bob throw an unfair coin repeatedly, with probability 2/5 of landing heads. Alice starts with £2 and Bob starts with £3 . Each time the unfair coin lands heads, Alice gives Bob £1 . Each time the unfair coin lands tails, Bob gives Alice £1 . The game ends when one player has £5 . (a) Draw a labelled Markov chain describing the problem, and write down a transition matrix P. Write down the communication classes, and classify them as either recurrent or transient. (b) Using the transition matrix, calculate the probability that Alice loses all of her money in exactly four tosses of the unfair coin. (c) Calculate the (total) probability that Alice loses all of her money (before Bob loses all of his). (d) Calculate the expected (mean) number of tosses of the unfair coin, for the game to end.
View More

View More

rts to the fireworks platforms: one part is on the ground and the other part is on top of a building. You are going to graph all of your results on one coordinate plane. Make sure to label each graph with its equation. Use the following equations to assist with this assignment. • The function for objects dropped from a height where t is the time in seconds, h is the height in feet at time it t, and 0 h is the initial height is 2 0 ht t h ( ) 16 =− + . • The function for objects that are launched where t is the time in seconds, h is the height in feet at time t, 0 h is the initial height, and 0 v is the initial velocity in feet per second is 2 0 0 ht t vt h ( ) 16 =− + + . Select the link below to access centimeter grid paper for your portfolio. Centimeter Grid Paper Task 1 First, conduct some research to help you with later portions of this portfolio assessment. • Find a local building and estimate its height. How tall do you think the building is? • Use the Internet to find some initial velocities for different types of fireworks. What are some of the initial velocities that you found? Task 2 Respond to the following items. 1. While setting up a fireworks display, you have a tool at the top of the building and need to drop it to a coworker below. a. How long will it take the tool to fall to the ground? (Hint: use the first equation that you were given above, 2 0 ht t h ( ) 16 =− + . For the building’s height, use the height of the building that you estimated in Task 1.) b. Draw a graph that represents the path of this tool falling to the ground. Be sure to label your axes with a title and a scale. Your graph should show the height of the tool, h, after t seconds have passed. Label this line “Tool”.
View More

from the second part that both develop the same theme. The only thing I see is when jem helps ms.dubose and when he goes to help Atticus from being attacked. Book is on to kill a mockingbird
View More

survey of all their employees found that employees were required to respond to an average of 50 work-related emails per week with a standard deviation of 1.5 emails per week. However, an employee advocacy group believes the average number of work-related emails Indigo Insurance Company employees are now required to respond to is more than 50 emails per week. To investigate this further, the employee advocacy group took a random sample of 20 staff employed by Indigo Insurance Company during the second week of March 2018,and asked these employees to record the number of work-related emails to which they were required to respond. (b). What does the highlighted section of the distribution in Figure 1 represent? (c). The random sample of 20 employees of Indigo Insurance Company taken by the employee advocacy group turned out to have a mean of 50.8 work-related emails to respond to in that week. Does this sample look like it belongs to the sampling distribution displayed in Figure 1? Justify your answer. (d). Given the sample was randomly selected and that the number of work-related emails each employee was required to respond to was recorded accurately, what conclusion can we reach from part (c)? To answer questions (b) to (d), consider the sampling distribution shown in Figure 1.
View More

izontal. Its upper end is connected to a wall by a rope, and its lower end rests on a rough, horizontal sur- face. The coefficient of static friction between the beam and surface is ms. Assume the angle u is such that the static friction force is at its maximum value. (a) Draw a force diagram for the beam. (b) Using the condition of rotational equilibrium, find an expression for the tension T in the rope in terms of m, g, and u. (c) Using the condition of trans- lational equilibrium, find a second expression for T in terms of ms, m, and g. (d) Using the results from parts (a) through (c), obtain an expression for ms L u Figure P12.16 Q/C S vertical component of this force. Now solve the same problem from the force diagram from part (a) by com- puting torques around the junction between the cable and the beam at the right-hand end of the beam. Find (e) the vertical component of the force exerted by the pole on the beam, (f) the tension in the cable, and (g) the horizontal component of the force exerted by the pole on the beam. (h) Compare the solution to parts (b) through (d) with the solution to parts (e) through (g). Is either solution more accurate? 19. Sir Lost-a-Lot dons his armor and sets out from the castle on his trusty steed (Fig. P12.19). Usually, the drawbridge is lowered to a horizontal position so that the end of the bridge rests on the stone ledge. Unfor- tunately, Lost-a-Lot’s squire didn’t lower the draw- involv- ing only the angle u. (e) What happens if the ladder is lifted upward and its base is placed back on the ground slightly to the left of its position in Figure P12.16? Explain.
View More

e magnitude of experienced weight difference if a 21.5kg rover (robot) was on the surface of Jupiter and Mercury? so i got gravitational field strengths but I do not know how to do the second part of the question Idk what they are referencing when they are saying the magnitude of experienced weight difference
View More

et loans (he doesn't "earn" income). With the loans (L) he needs to decide between first period consumption (C1) and investment (I). The amount invested will allow him to get a second period income Y with probability P which is increasing in I (therefore, P(I)), In case of success and the person obtain Y, the individual should use Y to repay the loan (L) that he requested in the first period and consume in the second period (C2). However, with probability 1 - P(I), the person don't get Y and therefore only consume C1. Note that if the individual only invest the loan (L=I) and don't obtain Y, he can't consume anything. That motivates him not to invest the whole loan and keep part of the loan in order to warrant at least first period consumption. Therefore, considering B the parameter for the time preference, the problem would be: max U=ln(C1) + Bln(C2) s.t: L = I + C1 Y(I) = L(1+r) + C2 with Probability P(I) or s.t: L = I + C1 with probability 1 - P(I) My question is, Have you ever seen something like this? If yes, how to proceed? What is more important, I really need a bibliography (a book or article talking about this)
View More

1.AU MAT 120 Systems of Linear Equations and Inequalities Discussion

mathematicsalgebra Physics